
THE UNIVERSITY OF CHICAGO

ANALYSIS OF GENERATIVE ADVERSARIAL MODELS

FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

STEVEN BASART

CHICAGO, ILLINOIS

JANUARY 2017

TABLE OF CONTENTS

LIST OF FIGURES . iv

ABSTRACT . v

1 INTRODUCTION . 1
1.1 Background . 1

1.1.1 Objectives . 1
1.1.2 Contributions . 2

2 GENERATIVE ADVERSARIAL NETWORKS 3
2.1 Overview . 3
2.2 Architectural Variants . 5
2.3 Loss . 6

2.3.1 f -Divergences . 9
2.4 Training . 10

2.4.1 Training Heuristics . 11
2.4.2 GAN Issues . 12
2.4.3 Datasets . 12

2.5 Contributions . 13
2.5.1 Architecture . 13
2.5.2 Training Procedure . 17
2.5.3 Interpretability . 17
2.5.4 Semi-Supervision . 18
2.5.5 Memorization . 19

2.6 Related Work . 20

3 EVALUATION OF GENERATIVE MODELS . 23
3.1 Background . 23

3.1.1 Generative Adversarial Networks . 23
3.1.2 Previous Measures . 23

3.2 Measure . 26
3.2.1 Image Embedding . 28
3.2.2 Alternative Forms . 30

3.3 Methods . 30
3.3.1 Datasets . 30
3.3.2 Architectures . 31

3.4 Experiments . 32
3.4.1 Comparisons to Other Measures . 32
3.4.2 Distribution Divergence Measure . 34
3.4.3 Insensitivity to Embedding . 36
3.4.4 Insensitivity to Architecture . 36

ii

3.4.5 Missing Modes . 36
3.4.6 ImageNet Results . 37
3.4.7 GAN Generator Comparisons . 38

4 CONCLUSIONS . 39
4.1 Conclusion and Future Work . 39

iii

LIST OF FIGURES

2.1 GAN variations . 3
2.2 Conditional Adversarial Network . 4
2.3 Typical GAN Architecture . 6
2.4 U-net architecture . 7
2.5 ModNet . 14
2.6 Interpretability samples . 18
2.7 Semi-supervised . 18
2.8 Pix2Pix Example . 20
2.9 VAE Diagram . 21
2.10 GAN vs VAE samples . 22

3.1 CIFAR-10 samples . 26
3.2 Cherry-picked results . 29
3.3 Parzen Window Estimation. 31
3.4 Alternative semantic embeddings. 32
3.5 AIS . 33
3.6 Distribution Divergence Measure plotted over time 35
3.7 Comparison of Measures on Modes. 37

iv

ABSTRACT

We study Generative Adversarial Networks (GANs) and their applications to various tasks,

as well as the creation of a measure to analyze their performance. We create a novel network

that can be used for interpretability, image generation, and augmenting existing datasets.

Last, we create a new measure that scores sets of images. The measure computes the

relative divergence between the test set and generated set. This measure has several nice

properties: tracks image quality, is unbiased, detects when the generator has missing modes,

and captures the divergence of the generative model to a test distribution.

v

CHAPTER 1

INTRODUCTION

1.1 Background

Generative models have been used in such tasks as information retrieval (Wang et al., 2013),

text classification (Antti, 2012), speech generation (van den Oord et al., 2016), and modeling

income inequality (Pareto, 1897). The problem of generating natural images was considered

too difficult until recently. Since 2013 researchers have begun using generative models to gen-

erate plausible looking images using such methods as autoregressive models such as SPARN

(Goessling and Amit, 2015) and pixelcnn (Salimans et al., 2017), probabilistic graphical mod-

els such as variational autoencoders (Kingma and Welling, 2013), and generative adversarial

networks (Goodfellow et al., 2014a).

The generation of images is an important task for three main reasons: scientific, utilitar-

ian and artistic value. The scientific reason is that by having a good generator of natural

images, one can use the generator as a prior over natural images. A good prior can be

useful for Bayesian inference in image analyses. There are many utilitarian tasks that could

benefit from generating natural images such as inpainting, colorization, sampling from rare

categories, and generating artwork. One example of an artistic task is the task of “searching

for similar images” which is currently approached as an information retrieval problem, but

it could be reformulated as an generation task to become “generate similar images”.

1.1.1 Objectives

The work presented in this paper covers a recent research direction of Generative Adversarial

Networks or GANs. The main objective of our research involving Generative Adversarial

Networks is to explore a novel approach on utilizing the generator as a basis to query other

models. Our first objective is to provide a solution to the problem that neural networks are

1

considered uninterpretable black box models. In this way we can use a the generator of a

generative adversarial network to query what examples would fool another model.

A secondary objective of our GAN research is to explore how well generators can act to

supplement or augment a dataset. By modeling the entire distribution it should be possible

to generate samples that are harder and can help in generalization. We explore how diverse

and distinct these images are.

The final objective of this work involves the creation of a novel evaluation measure for

generative models. The measure aims to measure generalization error of the generator and

ignores the discriminator of GAN. By formulating the measure in this way we can compare

different image based generative models outside of GANs.

1.1.2 Contributions

Our contributions to GAN research are as follows:

• Creation of a novel GAN architecture. 2.5.1

• Novel approach for Neural Network interpretability. 2.5.3

• Demonstrating usefulness in augmentation of existing datasets. 2.5.4

The contributions relating to the measure are as follow:

• Measure approximates the relative divergence between generated and real distributions.

3.2

• The measure compares entire distributions rather than comparing on a per-image basis.

3.2

• The measure tracks image quality. 3.4.6

• The measure penalizes GANs that miss modes. 3.4.5

2

CHAPTER 2

GENERATIVE ADVERSARIAL NETWORKS

2.1 Overview

Figure 2.1: GAN variations

Generative Adversarial Networks (GANs) are a type of generative model that use neural

networks and an adversarial training scheme. First proposed in Goodfellow et al. (2014b), the

work displayed sharp images unlike those seen with other methods see Fig 2.10. At the core

of Generative Adversarial Networks is the concept of two competing (adversarial) networks.

One network the generator, termed G, takes in random noise as input and generates an image

as an output. The other network, termed the discriminator D, has the task to predict the

probability an image is real. Its task is therefore to discriminate between real and generated

images by assigning a low score to generated or fake images while assigning a high score to

real images. We can can call this a “Vanilla GAN” as it was the first proposed GAN model.

For other variations on the traditional “Vanilla GAN” see Fig 2.1. To highlight some of

the differences between the models it can be roughly broken down into two other categories:

whether the discriminator has access to the latent variables before making its prediction,

or whether the discriminator itself predicts the latent variables. A brief discussion of each

3

model with the first being Conditional GAN. In this framework the GAN will condition its

output on a latent variable of the target class. The discriminator will then take as input

both an image and a label and then produce the same output [0, 1]. In bidirectional GAN,

there is a separate network whose task is to generate a latent variable z for every input

image. The discriminator will take in both z and an image and again produce an output

in [0, 1]. The idea here is to learn a more informative mapping on the latent space as well.

For the final three models there are a few subtle differences between them, but they all

have the discriminator predict a class score along with the traditional real/fake score. The

above classification of GANs focused on the discriminator; however, one can also examine

the differences in the generator of GANs when doing a comparison.

Figure 2.2: Conditional Adversarial Network

There is another somewhat confusingly named variant called a conditional generative

adversarial network or CoGAN presented in (Isola et al., 2017) and shown in Fig 2.2. It

is confusing because there are several works that use the title CoGAN and yet are quite

4

different such as those in Isola et al. (2017); Liu and Tuzel (2016); Mirza and Osindero

(2014). The main difference between a CoGAN and a “Vanilla GAN” is that the generator

network G in a CoGAN will also take in as input an image to condition its output on. Unlike

a “Vanilla GAN” the generator of a CoGAN does not take a noise variable z. The main

focus for the remainder of this chapter will be on the CoGAN model. While we will refer

to the model as GAN it will be understood that it is specifically a conditional generative

adversarial model rather than a plain generative adversarial model.

A conditional generative adversarial network or CoGAN are part of the image to image

based models. The task for the model is to generate a images similar to the target distri-

bution, same as the “Vanilla GAN.” In image to image based tasks there are two paired

distributions with a bijection between the elements. An example is the task of coloring

images where the color image and its corresponding black-and-white version are the pairs.

The reason they are called image to image models is because the generator will take in an

image, instead of a random noise vector, and output an image.

There are a few reasons to use the formulation of a CoGAN instead of GAN. As discussed

by Isola et al. (2017) there are many problems that can be formulated as an image to image

mapping problem such as colorizing images, coloring sketches, and image segmentation.

More generally the task can be seen as learning a map between two distributions which the

general task can be suited to many problems outside of images. Empirically it appears as if

learning the mapping between paired distributions is easier than learning either distribution

model individually.

2.2 Architectural Variants

The architectural space that has been explored by the research community relating to GAN

research is extensive. The majority of the architectural variants that have won the ImageNet

(Russakovsky et al., 2014) challenge have been explored and utilized in GANs to varying

5

Figure 2.3: Typical GAN Architecture
This particular GAN architecture is from DCGAN, however, it is reflective of many other

GAN architectures used. Note that while in this particular model the generator and
discriminator are symmetric, this is not always the case.

degrees of success. The first GAN architecture used only fully connected layers. The sub-

sequent architectures utilized a fully convolutional architecture as shown in Fig 2.3. There

have been several attempts to use more powerful architectures such as ResNet or others but

most of the results thus far have been poor.

For our experiments we use a modification of the U-Net architecture (also presented in

some literature as V-Net) shown in its original implementation in Fig 2.4. Our architectural

modifications are described in more detail in section 2.5.1. The U-Net architecture was first

used for GAN research in Isola et al. (2017). The symmetric shape of the U-Net architecture

is constructed in such a way that allows features from earlier layers to get concatenated onto

a later layer in the network. Examples of using the U-Net as a generator in be seen in Fig

2.8.

2.3 Loss

Let us now define some notation used hereafter. Discriminator, D, corresponds to the neural

networks where the input is an image and the output is in range [-1,1]. The generator, G,

takes as input a noise vector and outputs an image. For the conditional generative adversarial

network, the generator, G, can take as inputs an image and a target class variable yt. Input

image x is a real image drawn from pdata, and label y is the corresponding label of image

6

Figure 2.4: U-net architecture
This architecture was originally used for breast tumor detection. It is presented here in its
original form. Each blue box corresponds to a multi-channel feature map. The number of

channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the
box. White boxes represent copied feature maps. The arrows denote the different

operations.

x. Let yt be a target label of the same list of classes as y but not necessarily equal to y. A

noise vector z, is drawn from pz which is typically standard multivariate Gaussian. Finally,

let σ represent the logistic function.

The traditional GAN loss is

min
G

max
D
L(G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))] (2.1)

At optimality the output of the generator would be equivalent to real data and the output

of the discriminator would always be equal to 0.5 as it can no longer discriminate between

real and generated (or fake) input. The optimality in practice is never reached.

For loss used in CoGAN we need to introduce x′ which is the pair of x. There are two

7

sets from which we split pdata into X and X ′ and there exists a bidirectional map between

every element in X to X ′. The GAN loss used in Isola et al. (2017) is as follows

min
G

max
D
L(G,D) = E(x,x′)∼pdata(x)[logD(x, x′) + log(1−D(x,G(x))] (2.2)

There is an additional loss term applied to the generator model and added to the loss

above

E(x,x′)∼pdata(x)[‖(x
′ −G(x))‖1] (2.3)

The pair (x, x′) are drawn jointly from the data distribution. With this loss we see that

the discriminator takes in a pair of images and determines whether or not the pair is real or

fake. There is also the alternative simpler formulation where the discriminator only compares

the generated distribution to the target distribution as shown

min
G

max
D
L(G,D) = E(x,x′)∼pdata(x)[logD(x′) + log(1−D(G(x))] (2.4)

This alternative loss has no empirical difference and is a simpler formulation. The L1

penalty terms is still added to the above loss.

Our loss is more closely related to 2.4. We can summarize the loss we use to train our

model as follows

LGAN = LG + LD (2.5)

LG = Ex[− log(σ(D(G(yt, x))))] (2.6)

LD = Ex[− log(σ(D(x)))− log(1− σ(D(G(yt, x))))] (2.7)

Our first loss is the typical GAN loss. Something of note here is that LD sometimes has an

alternative form LD = − log(σ(D(x))) + log(σ(D(G(yt, x)))). We found that the alternative

8

form tended to be much less stable for our experiments. We present it as the sum of two

distinct losses because the losses as originally presented in equation 2.1 may indicate that the

loss can be optimized directly. In practice though the generator and discriminator objectives

are optimized as two separate steps.

Llabel = Ex[−y log(softmax(D(x))− yt log(softmax(D(G(yt, x))))] (2.8)

The loss above that we employ is the standard cross entropy loss. Unlike many other GAN

papers such as Salimans et al. (2016) we wish to encourage the discriminator to classify the

real images x with true label y. At the same time we also encourage D to classify generated

images G(yt, x) with the target label yt. Next we define our modification penalty

L1 = Ex[‖x−G(yt, x)‖1] (2.9)

This last loss is an `1 penalty between the generated image and the image it is conditioned

on. In this way we try to force that the changes applied to an image remain minimal. Now,

we have our final combined loss

L = LGAN + Llabel + λL1 (2.10)

By combining all three losses, we can train our model to produce natural fooling examples.

We add a hyper-parameter λ to the L1 loss to control the strength of preservation over class

adjustment.

2.3.1 f -Divergences

This section is a comment on the loss function that is typically used and about our own loss

function that we used. The typical loss function used in GAN literature derived a relation

of the Jenson Shannon Divergence (JSD) to the Adversarial Loss however the Adversarial

9

loss is then modified from

− log(1−D(G(x))) (2.11)

to

log(D(G(x))) (2.12)

The authors of paper Goodfellow et al. (2014b) lose any connection to JSD by performing

this modification. This new loss function has no known theoretical implications.

Due to this new loss function having no known divergence counterpart another work

Nowozin et al. (2016) has shown that the specific divergence chosen in Goodfellow et al.

(2014b) is not necessary to make GANs work. In their work they test out a variety of

divergences and term their GAN, f -GAN showing that the family of f-divergences can all

work to train a GAN. Similarly there have been other loss functions applied such as the

Wasserstein distance.

In GAN literature many of the comparisons are using “simple” datasets such as LSUN

and MNIST. LSUN is the large scale scene understanding dataset, however when used in

the GAN literature it is typically restricted to only include bedrooms. MNIST and other

related datasets are covered in section 2.4.3. Ultimately though there is no theoretical or

even practical best loss function as each paper seems to use a slight modification.

This lack of a best function is highlighted in the literature. Papers either delay showing

results or fail to show any comparative results and instead highlight their own cherry-picked

images. In our own experiments we have found that loss function does affect the time to

convergence and even the final qualitative outputs.

2.4 Training

An important question that remains is how to train a “Vanilla GAN”. The Discriminator

is trained like a binary classifier where the positive labels correspond to real images and

10

the negative labels correspond to the generated images. The Generator is trained as an

adversary to the discriminator. It is trained to maximize the loss of the Discriminator and is

updated by back-propagating the loss through the discriminator network (while holding the

discriminator fixed) to the generator network. The loss function is covered in more detail in

2.3.

There are a few differences in training a CoGAN as compared to a GAN. The main

difference is that the loss function changes by the addition of an L1 norm penalty between

the generated image and the target image. The additional loss term is sometimes weighted.

2.4.1 Training Heuristics

In addition to what was mentioned in section 2.4, the first GAN paper (Goodfellow et al.,

2014a) employed a differential or varied update schedule between the discriminator and that

of the generator. The generator is updated twice as often as the discriminator. For every

update step to the discriminator, it will be frozen for the next two while only the generator

is updated. There are a few commonly held intuitions behind this heuristic. One is that the

discriminator has an easier time learning to discriminate. Another is that the generator has

a harder time learning to generate a new distribution that can fool the discriminator. The

above training scheme more often than not ends up with a collapsed model that produces

output akin to white noise. Several heuristics employed to deal with model collapse described

below.

Other heuristics employed also appear to target the discriminator by making it weaker. A

heuristic termed label flipping adds noise to the positive target labels. This asymmetric tar-

geting tries to smooth the two distributions that the discriminator learns. Similarly another

technique adds noise directly to the real and generated inputs fed into the discriminator.

The level of noise is dropped on an exponentially decaying schedule (Salimans et al., 2016).

Inspired by these techniques we tested freezing a layer or several layers of the discrimina-

11

tor. This acts as a stronger corruption by transforming the intermediate representation via

a nonlinear function as opposed to an linear function presented earlier. We found this tech-

nique to outperform adding noise or label flipping and can be augmented with label flipping.

This leads to hypothesis that weak discriminators are optimal at least in the beginning of

training to make GANs work. It still does not elucidate how to improve GAN training.

The success or failure of a particular heuristic is still hard to determine apriori. However

a common theme among the heuristics is that they all aim to weaken the discriminator.

2.4.2 GAN Issues

Section 2.4.1 highlighted some of the issues dealing with model collapse for GANs. When

the generator stops learning or only produces one output. However there are other issues

that are encountered when training GANs. One of the issues with the training of GANs that

a lot work in the literature has focused on is how to stabilize the training.

Finally there is the issue of having a meaningful loss function. Currently the loss function

can at best be a reflection as to how well the generator is “fooling” or the discriminator

is successfully discriminating. Performing at an optimum for this loss function does not

necessarily correspond to realistic generations. The optimum itself is also typically not

reached when training GANs.

2.4.3 Datasets

The datasets used for the experiments presented in this paper include: MNIST, SVHN,

CIFAR, Char74k.

MNIST. The MNIST dataset consists of black and white handwritten digits has a train-

ing set of 60,000 examples, and a test set of 10,000 examples.

SVHN. The Street View House Numbers (SVHN) dataset is of cropped 32 by 32 digits

found through Google Street View. There are 73,257 images in the training set, 26,032

12

images in the test set, and 531,131 images for additional training.

CIFAR. The two CIFAR datasets consist of colored natural scene images, with 32x32

pixels each. CIFAR-10 consists of images drawn from 10 and CIFAR-100 consists of images

drawn from 100 classes. For both datasets there are 50,000 training images and 10,000 test

images.

Char74k. We used the subset of English characters that consists of 12,503 images.

We randomly shuffled the dataset and split it into 10503 for training and 2000 for testing.

Even on a dataset with this few examples per class ModNet is able to generate compelling

examples.

2.5 Contributions

While in some previous sections we have highlighted a few of the contributions, in this section

we will directly speak to some of the more prominent contributions of our recent work. We

will discuss the new architecture, new method for interpretability, results in semi-supervision

and memorization.

2.5.1 Architecture

We call our network the Modification Network or ModNet for short. Our generator is a

modified U-Net architecture. Previously it was used as a generator in Isola et al. (2017) to

produce an image but in our work we modified the output to be that of an image that would

be added point-wise to the input image. We call this image a “delta image” as it acts to

highlight or mask out features present in the original image. After the point-wise addition

we either clip or renormalize and shift to bound the values into range [-1,1]. We direct the

label of the generated image by conditioning the generator on a one-hot vector yt that is fed

in along with the original image. This allows us to determine which class we want the input

image to change to. An example is shown in Fig 2.5.

13

+

D

ModNet

Classifier

y

yt G

Figure 2.5: ModNet
One variant of the proposed architecture where the classifier and discriminator are two

separate networks. The Generator in the top left of the figure takes in both an input image
and a target label yt to then produce a delta image to be added point-wise to to the input

image. The final output after the addition is passed through a tanh. The inputs to the
discriminator are normalized to be in the range [-1,1]. The classifier is tasked to predict the

true label for real image and the target label for a generated image.

ModNet differs from its sibling network presented in the work of Isola et al. (2017) in

three key ways. In utilizing the UNet architecture to serve as their generator the network has

to learn the complex task of generating images. However, because the network is conditioned

on natural images its task is easier than a “Vanilla GAN” which map from the space of a

standard Gaussian to natural images. The generator in ModNet could be argued to have an

even easier task. The task has changed from generating an entire image to generating the

deltas required to be applied to the original image. This now changes the focus to learning

to change relevant portions of an image and it can learn to ignore generating backgrounds.

Another modification from Isola et al. (2017) is that now the final nonlinear activation in

the generator has to be changed from a sigmoid unit to a tanh. The reasoning behind this

change is that if the deltas are bounded in [0,1] instead of [-1,1] the network is constrained

to only learn to add to the image. When testing under this setting we observed poor results

14

mostly just adding a bright filter or white mask over areas instead of learning a proper

transformation.

Lastly by adding the additional classification loss, see equation 2.8, we now can create

two variants of our architecture. One in which the discriminator acts as both discriminator

and classifier as seen in Odena et al. (2016). The other new variant is where we can split our

classifier from our discriminator this allows for two different gradient signals to be received

by the generator see Fig 2.5. There exists the option of having the classifier to be pretrained,

and optionally frozen.

15

Training Algorithm: batchsize, m = 100, or 20 depending on image size

for number of training iterations do

for j steps do

• Let V be the set of m examples {(x1, y1),(x2, y2) . . . (xm, ym) } sampled from the

data distribution.

• Let U be the union of the set of m examples {x1t ,x2t , . . .xmt } from the data

distribution and the set m examples {y1t , y2t . . . ymt } from the data distribution.

Note that we use t in xt and yt to denote different set of examples.

• Update the discriminator by ascending its stochastic gradient.

∇θd
1

m

m∑
i=1

[− log(σ(D(xi)))− log(1− σ(D(G(yit, x
i
t))))

− yi log(softmax(D(xi))− yit log(softmax(D(G(yit, x
i
t))))]

end

for k steps do

• Let U be the union of the set of m examples {x1t ,x2t , . . .xmt } from the data

distribution and the set m examples {y1t , y2t . . . ymt } from the data distribution.

• Update the generator by descending its stochastic gradient.

∇θg
1

m

m∑
i=1

[− log(1− σ(D(G(yit, x
i
t))))− yit log(softmax(D(G(yit, x

i
t))))

− ‖xit −G(yit, x
i
t)‖1]

end

The gradient-based updates can use any standard gradient-based learning rule.

We used ADAM (Kingma and Ba, 2014) in our experiments.

end

16

2.5.2 Training Procedure

Based on the use case of our model there two distinct training procedures that could be

employed. The two use cases are for interpreting a pretrained model or for augmentation.

The training for the latter follows the training procedure described in section 2.4. The

training for interpretability requires that the discriminator be separate from the classifier.

The classifier is never updated during training but its error signal is used to update the the

generator. See training algorithm for more details.

We typically set the batch size, m, to be the maximum that could fit on a GPU which

is on the order of hundreds for small images and ∼ 20 for large images. For the values how

many discrimnator updates to generator updates or j, and k respectively, we used either

(1,2) or (1,1). Both achieved similar results. Finally λ, or the weighting on the `1 penalty

term is in the range of [10−3, 10−5]. The value varied depending on the dataset but we tried

to keep the `1 penalty to be on the same order as the other two losses. Lastly to remove the

hand tuning of λ we also used the average `1 penalty which achieved similar results to the

previous weighted λ variant.

2.5.3 Interpretability

In this section we highlight how with this new approach we can better understand what

neural networks are learning. This can be used to attempt to debug, or make them better.

To run the interpretability experiments we needed to use the variant of our architecture

where the classifier and discriminator are separate from one another. In this way our goal is

to generate images with a high classification score that fool a classifier.

For Fig 2.6 we show what happens when you take a shallow classifier and use our method

to fool it. We are able to show some small and also large image changes that will lead to a

high classification score.

17

(a) Original CIFAR-10 images. (b) Generated images with corrected label

Figure 2.6: Interpretability samples
A sample of CIFAR-10 images that fool a weak classifier. We can see that the model learns
to associate wheels with trucks by putting them on a cat and switching the label. Target

labels of generated images are as follows. 1st row: Deer, Deer, Truck, Cat. 2nd row: Cat,
Horse, Ship, Plane. 3rd row: Truck, Truck, Deer, Truck. 4th row: Car, Dog, Bird, Horse.

2.5.4 Semi-Supervision

0 2000 4000 6000 8000 10000
Number of Labeled Real Examples

0

20

40

60

80

Ac
cu

ra
cy

Semi Supervised Results

Normal
Added Generative data

Figure 2.7: Semi-supervised
Semi-supervised results on SVHN. The figure is generated from four query points.

Previous work from Salimans et al. (2016) used GANs as a tool to expand a small dataset.

They created several thousand images from a GAN and used a fraction of the training data

18

to train a new classifier. They reported the total error as in the total amount of mistakes

made on a dataset as opposed to percent error as we suspect it did not perform that well

compared to other data augmentation methods.

We were inspired by their idea to use a generator to create extra images that can be

used for semi supervised learning. We ran two different semi supervised experiments. The

first experiment involves creating an entirely generated conditional dataset. From this we

train a new classifier and measure its performance. Using only generated images under the

condition that the target label not equal the source label we can achieve 88%. This result is

rather low accuracy compared to state of the art accuracy achievable on the regular dataset.

This implies that using the generator causes some of the features in the training data to be

removed and not allow for as great generalization as the original dataset.

The second experiment involves taking a subset of the original training data and using

only those images as the conditional images to generate the other labels in the dataset. We

experimented with [10, 100, 1,000, 10,000] real examples and for the added generated data

we generated the other nine labels possible for each example. The added generated data

then has [100, 1000, 10,000, 100,000] images in each respective data point (it corresponds to

the sum of the real and generated). Then a new classifier is trained on both the generated

and real subset of the images and is compared to a classifier trained on only real data. The

results for this experiment are shown in Fig 2.7.

2.5.5 Memorization

Lastly we hypothesize that the traditional GANs might be memorizing the training data, we

wanted to test if this was also the case for the CoGAN. This hypothesis was prompted by

the fact that some work utilize a per pixel l2 loss during GAN training. This loss encourages

the generator to memorize the training images as opposed to learning the entire distribution.

To test our model we computed the nearest neighbors of all of the training images using

19

`2 distance computed on pixels and looked up the nearest neighbor of all the generated

images against training images. We observed that all of the generated images were always

closest to image they were conditioned on rather than any other image. This led us to the

conclusion that our training scheme was not retrieving another image within the training

data that was of the target label. We have yet to run this experiment on other GANs to

determine if they are memorizing the training data.

2.6 Related Work

Figure 2.8: Pix2Pix Example

The work most similar to ours is that of Isola et al. (2017). The task is given paired image

datasets, to generate an image conditioned on the input image. The problem in image-to-

image mapping is a supervised problem where for each image there is a corresponding image

that is its ground truth. The task of the generator is to generate the corresponding image

pair conditioned on the input image. The task of the discriminator is to evaluate an image

pair as being real or generated. The loss function they employed was the traditional GAN

loss plus the `1 penalty between the generated image and its corresponding paired image.

Examples of the various tasks they employed is shown in Figure 2.8.

While GANs have become a popular generative model there are other generative models

20

Figure 2.9: VAE Diagram
Diagram exhibiting the typical structure of a Variational Autoencoder.

that exist. Variation Autoencoders (VAEs) are neural network models that approximate

some automorphism. The main difference between an autoencoder and a variational autoen-

coder is that the bottleneck is of the form of two vectors where the first vector models the

mean and the second vector models the covariance of a multidimensional Gaussian. The

reasoning behind generating these two vectors is we want to encode our input as a point on

some multivariate Gaussian. To enforce this encoding resembles a multivariate Gaussian,

there is the additional loss of the form −KL((µ,Σ),N (0, 1)). The additional loss term is

a penalty for how far the means and variances differ from the standard multidimensional

Gaussian and in practice it is typically scaled by some lambda factor.

To train the variational autoencoder, the re-parameterization trick is utilized where you

take ε which is sampled from a standard Gaussian and multiply it by the generated σ and

add it to generated µ from the encoder. To convert the output z into a real image typically

deconvolution is employed similar in style to the generator in GANs.

The main benefit of this model is that once trained it becomes easy and efficient to sample

from the model. The generation of the image happens by initializing the bottleneck with

parameters sampled from a multivariate Gaussian and running the model beginning from

the bottleneck layer through the rest of the network.

Another recent generative model is known as Pixel CNN (Salimans et al., 2017). There

have been a few variants of this model such as Pixel RNN and Pixel CNN++. The model

21

(a) Samples from a GAN (b) Samples from a VAE

Figure 2.10: GAN vs VAE samples

predicts the next pixel given the previous context which are all of the previous pixels in

raster order. As a generative model one just needs to initialize the first pixel the model sees

and then it can be used to generate all of the other pixels in raster order. It has had its

greatest success as a means for compression.

Other autoregressive models that predict in pixel order are MADE from Germain et al.

(2015) and NADE from Uria et al. (2016). The former model modifies an autoencoder

architecture to apply binary masks to the weights (effectively a binary dropout) to ensure

that each pixel prediction does not depend on another it is conditioned on. This ensures

valid log-likelihoods can be computed from the model. The latter model NADE computes

the log-likelihoods directly from the inputs by conditioning each neuron to only examine all

future pixels. This also works to ensure that the likelihood can be broken into its conditional

probabilities. Both works were evaluated on the MNIST dataset.

Other work from Goessling (2016) utilize Gaussian mixtures to learn a distribution over

images. The work shows some improvements over the other autoregressive models namely

MADE and NADE in some datasets and inferior performance in other datasets such as

MNIST. Overall the work appears to be comparable in terms of performance.

22

CHAPTER 3

EVALUATION OF GENERATIVE MODELS

In this section we address the concerns about memorization and a lack of any standard eval-

uation metrics or measures. We define the purpose of a GAN as the creation of a generative

model. This statement is important because in the literature there are various different goals

that papers propose for GANs including as a pre-training scheme or for creating a good prior.

Given this purpose we set out to create an evaluation measure that captures how well the

generator approximates the true distribution.

3.1 Background

3.1.1 Generative Adversarial Networks

The specific GANs we consider in this chapter are that of DCGAN Radford et al. (2016),

Improved GAN Salimans et al. (2016), and Improved Wasserstein GAN Gulrajani et al.

(2017). The following descriptions are oversimplification of the changes from the initial GAN

architecture as developed in Goodfellow et al. (2014a). The DCGAN is an architectural

modification in that they replaced the multilayer perceptron with a convolutional neural

network (CNN). The Improved GAN builds from DCGAN by using a CNN and modifies the

loss by penalizing the difference between layers of generator and discriminator. Finally the

Improved Wasserstein GAN changes the loss to Ex∼Pr [D(x)]−Ez∼Pz [D(G(z))] and applies

a penalty to the gradients so that the CNN approximates a L1 Lipschitz function.

3.1.2 Previous Measures

Parzen Window Estimation. Parzen (1962) uses a kernel centered around each data

point to compute the density function of the data. It belongs to a family of kernel methods

that estimate the log likelihood of the data. The problem with this family of methods is that

23

they fail to properly track image quality and can be manipulated to achieve a desired result.

Moreover Theis et al. (2015) demonstrate how image quality provides no information about

likelihood and vice-versa. In addition the estimates from the methods can be quite far from

the true likelihoods. We also demonstrate how Parzen Windows fails to track image quality

in section 3.4.1.

Annealed Importance Sampling. Wu et al. (2016) follows in a similar vein by trying to

estimate the log-likelihood of the data. To estimate the log-likelihood in AIS, they consider

the geometric mean of many intermediate distributions between the prior, assumed to be

Gaussian with respect to the decoder model, and the target, the output of the decoder.

However, in GANs there is no restriction or implicit constraint to its target distribution to

be that of a Gaussian. The Gaussian prior assumption is met within variational autoencoders

(VAE) by explicitly penalizing the model from deviating from a Gaussian code. This loss in

VAEs explains why they score best using AIS as compared to GANs.

Still the main drawback to AIS was explained by Theis et al. (2015) who show that log-

likelihood based estimates are a poor measure. We further demonstrate how even within a

fixed model the estimates can vary by many nats by changing the variance of the Gaussian

prior in Figure 3.5.

The Inception Score. Salimans et al. (2016) uses the inception model which is trained

on Russakovsky et al. (2015) and takes the form: exp(Ex [KL(p(y|x)‖p(y))]). This measure

might arguably be the most popular measure currently used to measure quality of a GAN.

This measure was shown to correlate well with image quality assessment by Mechanical

Turkers and also promotes diversity of samples.

There are several faults with the Inception Score namely: its internal bias, its discourage-

ment of intraclass diversity, and its failure to capture repeated modes. The first point attests

24

to how the model used in the Inception Score is biased to images most similar to those found

in ImageNet. This is due to its training procedure and therefore makes the model unreliable

for images that differ significantly from those found in ImageNet. There exist many natural

datasets which differ significantly from ImageNet, such as SVHN Goodfellow et al. (2013),

satellite imagery Mnih and Hinton (2010), and NORB LeCun et al. (2004). This fact alone

concerning the model’s bias would not represent an issue, but the score does not take into

account the target distribution, so the score is only ever relative to the generated distribu-

tion. The second point can be observed by examining what increases the score most. The

score is maximized given images that activate a particular ImageNet class. Therefore the

measure promotes activation of many ImageNet classes as opposed to activating a single or

small number of classes, which can be regarded as promoting interclass variation. Having a

large intraclass variation i.e. many distinct samples of one Imagenet class would achieve a

low score. The last point we demonstrate experimentally in section 3.4.5, but can also be ob-

served as well in the formulation of the score. Where the score penalizes for only containing

a small number of modes by way of the p(y) being close to p(y|x) if there are only a handful

of modes. However once the number of modes exceeds some threshold, p(y) will approach

the maximum entropy for a given dataset and then the measure itself becomes saturated.

A measure that we do not consider in this paper is classifier two sample test Lopez-Paz

and Oquab (2017). The method involves training a neural network to classify images as

being real or fake, and then computing the average amount that it gets fooled to serve as the

statistic. This method is akin to training a discriminator during the training of GANs. By

relying on a neural network to classify in versus out of distribution there are no guarantees

it will produce any meaningful ordering for two models which are both in or both out of

distribution. As well the model would fail to detect the difference between an autoencoder

and a generative model.

25

W
it

h
o
u
t

B
a
tc

h
n
o
rm

N
o
rm

a
l

Figure 3.1: CIFAR-10 samples
CIFAR-10 samples from Improved GAN without Batch Normalization and the normal

Improved GAN. Images are randomly sampled during the end of training.

3.2 Measure

In this paper we aim to create a measure that is optimal if the distribution learned by

the generator matches the true distribution. Since the true distribution is unknown to us,

we approximate the true distribution with a set of finite samples S drawn from the true

distribution. Given S we can split the samples into a held out test set T and a training set

R. Similar to other computer vision tasks such as classification we would like to measure

how well the generator performs by evaluating the distance of the generated distribution

from the test distribution.

One approach to approximating images as distributions to consider each image as a delta

function around which some mass exists. This creates a point-wise mass distribution that can

be used in common for each distribution. Even with this representation though computing

the actual probability distribution of space is still intractable. From here we further relax the

distributions to be modeled as a Gaussian mixture. Computing the diverge of two Gaussian

mixtures is costly in their general form but we can approximate them with a variational

approximation which will provide us with a lower bound on the true divergence Goldberger

et al. (2003).

We arrive at our variational approximation by simplifying Goldberger et al. (2003) work

in approximating Gaussian mixtures. The following derivation begins from said work. We

will use π and ω to correspond to the mixing weights of the Gaussian mixture. We use the

26

subscripts a and b to refer to the index of the mixing weight for each Gaussian mixture. We

will use a to refer to the GMM f and b to refer to GMM g.

The likelihood Lf (g) = Ef(x)[log g(x)] relates to the KL divergence by KL[f‖g] =

Lf (f) − Lf (g). Therefore any estimate of likelihood can be related back to the KL. In

the following we will introduce a variational parameter φb|a which will have the following

constraints: φb|a > 0 and
∑
b
φb|a = 1.

By Jensen’s inequality we have

Lf (g) = Ef(x) log g(x)

= Ef(x) log
∑

ωbgb(x)

= Ef(x) log
∑

φb|a
ωbgb(x)

φb|a

≥ Ef(x)
∑

φb|a log
ωbgb(x)

φb|a

= Lf (g, φ)

(3.1)

This being a lower bound on Lf (g), we get the best bound by maximizing Lf (g, φ) with

respect to φ. We leave the details of the maximization to Goldberger et al. (2003).

φ̂b|a =
ωbe
−KL(fa||gb)∑

b′ ωb′e
−KL(fa||gb′)

(3.2)

A similar bound can be achieved for Lf (f). Finally we define the variational approxima-

tion by substituting φ into Lf (g) and the corresponding ψ into Lf (f).

KL(f‖g) =
∑
a

πa log

∑
a′ πa′e

−KL(fa‖fa′)∑
b′ ωb′e

−KL(fa‖gb)
(3.3)

In our specific case we can simplify the variational approximation to what’s below due to

some assumptions. Namely we assume an equal weighting of each Gaussian in the mixture.

Thus π and ω become a normalization parameter equal to the number of examples in each

27

respective mixture. We can also ignore the numerator as in our case it is a constant, only

adding a linear shift to our results. As a reminder for the following we use G as the generated

set |G| as the number of samples in the generated set, and g as a sample from G. Similarly

T is the test set, |T | the number of examples, and t a sample from T .

∑
t∈T
− 1

|T |
log

 1

|G|
∑
g∈G

e−D(t,g)

 (3.4)

Lastly there were a few popular choices for the approximations for the divergence, D.

The first is to approximate each GMM as a single multivariate Gaussian and then compute

the divergence of two multivariate Gaussians which has a closed form solution. The second

choice and the one we opted for is to consider D to be the pairwise distances between each

Gaussian mixture center. We found this approach to work better and led to less of a difference

in conceptualization from our original assumptions to the final approximation.

Given this final formulation we can observe a few nice properties of the measure. It can

achieve its optimal performance when the generator matches the test distribution.

An important note about the variational approximation is that it provides a lower bound

for KL, however, the restriction of positivity is lost. Therefore the results presented in the

paper are negative despite being presented as the KL.

3.2.1 Image Embedding

In the previous section we derived the Distribution Divergence Measure as a lower bound of

the KL Divergence between two Gaussian Mixtures. It still leaves open the question of which

embedding to use when computing the measure, and if an embedding is even necessary.

The main reason to have the measure computed on an embedding rather than on the

pixels themselves is twofold. The first reason is that by considering an embedding space

that is much smaller than the original space we can avoid the curse of dimensionality. This

28

Ch
er

ry
 P

ick
ed

Ra
nd

om

Figure 3.2: Cherry-picked results
An example GAN on trained on MNIST showing that cherry-picked examples accrued from

a GAN can be deceptive.

also works to ensure long term use of the measure as images are increasingly growing in

resolution so any measure that works directly in pixel space will increase its computation

time. The second reason to utilize an embedding is that it can compress images into the

core components of what is desired. There are many factors such as slight changes in blur,

brightness, or contrast that all allow an image to remain natural so the embedding should

be immune to slight variations of these modifications.

These requirements lead us to a consider embeddings that are invariant to slight changes

in brightness, contrast, or blur, of which a natural choice are neural networks. Neural Net-

work models are currently insensitive to slight changes in all of the aforementioned criterion

and can produce at above human level performance in some tasks such as that of classifi-

cation. Given this we chose our embedding to be the logits of a classifier trained on the

dataset of interest. The requirement of a pretrained classifier is currently a non-issue due

to the wide availability of pretrained models on most if not all of the standard datasets of

which GANs are trained on.

Logits. are the final output of a neural network before taking the softmax. The logits

represent a natural choice as they are the most compact dimensional representation while

still containing semantic information. The main reason to choose logits over the final output

probabilities is that Hinton et al. (2015) has shown that the logits contain a lot of information

29

that is lost after the softmax. The logits themselves can be used to train other networks

Romero et al. (2014).

3.2.2 Alternative Forms

Besides the form of the measure we have presented in equation 3.4 we also considered two

alternative forms of the measure. For the first alteration we considered the relative relative

divergence two pairs of distributions (train R and test T), and (train R and generated G).

The formulation is presented below in equation 3.5.

∑
r∈R

1

|R|
log

∑
t∈T

exp[−D(r, t)]/|T |∑
g∈G

exp[−D(r, g)]/|G|
(3.5)

This formulation captured most of the desirable properties that we sought but it ended up

not capturing when the generator missed several modes. A second formulation we considered

was the summation of equations 3.4 and 3.5. This had all of the desirable properties that

the original one had but failed to add anything obvious that the first measure missed. We

therefore kept the formulation presented in equation 3.4 due to it capturing all of the desirable

properties and its simpler formulation.

3.3 Methods

3.3.1 Datasets

We used the following four datasets and visualize the results as GANs train.

MNIST. The MNIST database Lecun et al. (1998) of handwritten digits has a training

set of 60,000 examples, and a test set of 10,000 examples.

30

0 20 40 60 80 100
Epoch

19495

19490

19485

19480

19475

Lo
g-

lik
el

ih
oo

d
Parzen Window Estimation

Normal
Without BatchNorm

0 20 40 60 80 100
Epoch

3620

3619

3618

3617

3616

Lo
g-

lik
el

ih
oo

d

Parzen Window Estimation with PCA Compression

Normal
Without BatchNorm

Figure 3.3: Parzen Window Estimation.
Here we demonstrate how the log-likelihood improves over time on the model without Batch
Normalization even though the model never achieves better images than the typical model.
We further demonstrate that even under PCA compression Parzen Windows fails to capture
the desired properties.

SVHN. The Street View House Numbers (SVHN) dataset Goodfellow et al. (2013) is of

cropped 32 by 32 digits found through Google Street View. There are 73,257 images in the

training set, 26,032 images in the test set, and 531,131 images for additional training.

CIFAR. The two CIFAR datasets Krizhevsky and Hinton (2009) consist of colored natural

scene images, with 32-by-32 pixels each. CIFAR-10 (C10) consists of images drawn from 10

classes and CIFAR-100 consists of images drawn from 100 classes. For both datasets there

are 50,000 training images and 10,000 test images.

ImageNet. The ILSVRC 2012 classification dataset Russakovsky et al. (2015) consists of

1000 classes, in total 1.2 million for training, 50,000 for validation, and 100,000 for testing.

3.3.2 Architectures

For this work we consider two primary GAN architectures for our evaluation, DCGAN Rad-

ford et al. (2016), and Improved GAN Salimans et al. (2016). We modified both architectures

to create a weaker generator by removing all of the batch-normalization layers. To create

our cherry picked examples for MNIST we removed convolutional layer 4 and modified the

31

0 20 40 60 80
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

KL
SVHN Logit Relative Divergence

Normal
Without BatchNorm

0 20 40 60 80
Epoch

0

1

2

3

4

5

KL

SVHN Prelogit Relative Divergence
Normal
Without BatchNorm

0 20 40 60 80
Epoch

0

20

40

60

80

KL

SVHN Hypercolumn Relative Divergence
Normal
Without BatchNorm

Figure 3.4: Alternative semantic embeddings.
We show that other semantic representations namely logits, prelogits, and hypercolumns
track each other with DDM. This highlights that DDM is insensitive to any particular em-
bedding so long as it contains enough semantic information to meaningfully discriminate
among the samples.

third convolutional layer to match the output of convolutional layer 4 from DCGAN. We

call this modified architecture small DCGAN. To run our final comparison over models we

compared the regular DCGAN, Improved GAN, and Improved Wasserstein GAN Gulrajani

et al. (2017).

For the purposes of creating the embedding we used Wide Residual Networks Zagoruyko

and Komodakis (2016) for both SVHN and CIFAR-10. To embed MNIST we trained a 4

layer CNN architecture, followed by a fully connected layer. We used Xavier initialization

Glorot and Bengio (2010) for the neural network used to embed MNIST and we used He

initialization for the wide residual networks.

3.4 Experiments

3.4.1 Comparisons to Other Measures

The first measure we examine is Parzen Windows as shown in 3.3. The measure shows

how the weaker model (the model without Batch Normalization) improves with respect to

log-likelihood, yet the samples never achieve anything resembling natural images. This is in

contrast to the regular Improved GAN architecture that appears more “natural” over time.

32

0.05 0.025 0.01
Sigma

0

50

100

150

200

250

300

Lo
g

Lik
el

ih
oo

d

Annealed Importance Sampling Scores for GAN10

Figure 3.5: AIS
Even for a fixed GAN the Annealed Importance Sampling Score can vary by an order of

magnitude depending on the sigma used for the Gaussian prior.

Thereby highlighting a result that agrees with Theis et al. (2015) that log-likelihood models

do not correlate with perceptual image quality.

Additionally Parzen Windows suffers from the curse of dimensionality. Fitting a ker-

nel to the space of natural images results in a very poor estimation as slight changes in

the pixel space do not correspond to any natural changes. Leaving much of the space

empty resulting in much difficulty estimating the likelihood. Another experiment that we

ran was compressing natural images by taking the top principle components that cap-

ture 95% of the variation of the data and then running Parzen Windows. In this set-

ting it would be expected that Parzen Windows would perform better but we still ob-

served the same behavior as highlighted in 3.3 where the weak model outperformed the

standard Improved GAN model. The code to run Parzen Windows was obtained from

github.com/goodfeli/adversarial/blob/master/parzen ll.py.

With regards to Annealed Importance Sampling in figure 3.5 we run AIS several times

while varying the variance parameter on a fixed GAN architecture, the “GAN10” architecture

from the AIS paper. We can observe that the final log-likelihood is heavily dependent on

the choice of sigma. This shows how the measure can be manipulated by varying sigma, a

hyperparameter, until the desired score is achieved.

33

It also highlights how the measure is inappropriate for implicit density models as their

claims of convergence only hold true for explicit density based generative models of which

variational autoencoders are. This is discussed in Wu et al. (2016) whereby to estimate the

exact posterior one requires simulated data. Therefore the final estimates that they derive

can be quite far from the true likelihood except when certain conditions are met of which

GANs do not meet.

The Inception Score has a few issues worth mentioning. The first issue occurs when

the generated set has a small number of images that resemble ImageNet images. This will

generate a high Inception Score, even though the majority of samples are of poor quality. If

a generator is able to produce a few samples that activate only one class, then it becomes

equivalent to taking the KL divergence between a one hot vector and uniform over 1000

classes. Afterwards one takes the exponential of this quantity so it becomes elog(N) where

N = 1000. Implying the maximum inception score is 1000 which is quite far from any of the

current datasets even computed on actual images and making the score ultimately difficult

to interpret.

Another issue of the Inception Score is that it fails to detect missing modes of the dis-

tribution. We created a dataset where we take natural images and replicate them until we

match N the number of samples in the training set. By increasing the number of samples

we thereby decrease the replication factor of the dataset. The Inception Score reaches its

optimal performance once there are 1000 distinct images. Whereas DDM does not reach the

optimum with any replication amount.

3.4.2 Distribution Divergence Measure

In this section we compute the Distribution Divergence Measure, DDM, on three different

datasets MNIST, SVHN, and CIFAR-10 and compare the results of the architectures de-

34

0 50 100 150 200 250 300
Epoch

0

100

200

300

400

500
KL

MNIST Logit Relative Divergence

Normal
Cherry
Without BatchNorm

(a) MNIST results.

0 10 20 30 40 50 60 70 80
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

KL

SVHN Logit Relative Divergence
Normal
Without BatchNorm

(b) SVHN results.

0 20 40 60 80 100
Epoch

5

10

15

20

25

KL

CIFAR Logit Relative Divergence
Normal
Without BatchNorm

(c) CIFAR-10 results.

Figure 3.6: Distribution Divergence Measure plotted over time
Distribution Divergence Measure plotted over time for the datasets. The baseline for all of

the experiments is plotted as the black line. For some datasets we can observe that the
model does not learn to generalize much more after the first epoch namely that of Improved

GAN on SVHN. The main reason it is likely performing worse under DDM is that it is
likely memorizing the training set and therefore becoming less like the test distribution.

scribed in section 3.3.2. We demonstrate that DDM achieves the correct ordinal rankings

for each dataset. Due to the architectures having a great dissimilarity in their outputs . We

want to start with a baseline task to ensure the model works under supervision before pro-

ceeding to more complicated comparisons that may look equivalent to human observers and

vary subtlety. We would like to note that removing batchnormalization from the Improved

GAN architecture produced the worst results both perceptibly and often several orders of

magnitude higher (worse) than all of the other architectures, thus they are not plotted.

For our MNIST experiment we tested DCGAN, weakened DCGAN, and small DCGAN.

We can observe that the correct ordinal ranking is achieved by the measure, highlighting that

the measure detects the missing modes of the distribution. By ranking the small DCGAN

better than weakened GAN it highlights that it is not fooled by noise and by ranking DCGAN

better than small GAN it further highlights the importance of the full distribution for a better

score.

For the SVHN experiment we tested DCGAN, weakened DCGAN and Improved GAN.

We left out small DCGAN as we had difficulty determining when small DCGAN was perform-

ing better or worse (i.e. producing more visibly natural images) than weakened DCGAN. In

our CIFAR-10 experiment we ran all of the same architectures as with SVHN.

35

3.4.3 Insensitivity to Embedding

To show that the DDM is not explicitly tied to the logits of a neural network we tested out

other representations that contain semantic information encoded from neural networks shown

in Fig 3.4. In this way we demonstrate that the measure still produces the correct ordering

among the compared architectures. We test three different embedding: logits, prelogit, and

hypercolumns.

Logits are the values of the final layer of the neural network before applying the softmax

function. Prelogits are the inputs to the layer before the logits. Hypercolumns Hariharan

et al. (2014) are a sampled representation of each layer in the neural network which contains

information from many different receptive fields.

3.4.4 Insensitivity to Architecture

We also tested whether the measure varies based upon the particular architecture used to

create the embedding. We experimented with determining if the measure varied based on

architecture used by varying the initialization of each architecture and experimenting with

different architectures. Ultimately while the final values from each architecture vary slightly

the overall ordering remains unchanged. We would like to note that all of the models have

sufficient model complexity to achieve at or near state of the art in the task of classification.

3.4.5 Missing Modes

In the work of Che et al. (2016) they highlight how a traditional GAN under synthetic

settings will not capture several modes of a Gaussian mixture model. To simulate how a

GAN may miss modes of a distribution we create a dataset of real images that we repeat

several times. In this way we can claim to have a generator that only learned a few modes

of the distribution namely n examples where n ∈ {10, 20, 100, 1, 000, 10, 000}. At 10,000

examples we no longer say that the simulated data is missing several modes as it is probably

36

0 2000 4000 6000 8000 10000
Number of Samples

7

8

9

10

11

In
ce

pt
io

n
Sc

or
e

Inception Score on Modes

0 2000 4000 6000 8000 10000
Number of Samples

280

260

240

220

200

180

KL

DDM on Modes

Figure 3.7: Comparison of Measures on Modes.
For this experiment we sampled 10,20,100,1000,10000 images from the training set and

replicated the samples up to the size of the original dataset of 50000. The inception score
saturates around 1000 images or a a replication amount of 5. For the DDM since we also
compare to a test set it does not saturate but instead approaches the relative divergence.

For both measures the orange line represents the best performance on each respective
measure.

covering a large portion of the dataset.

We test how well DDM and Inception Score can handle the above simulated data. We

take n random images from the training set and duplicate the images in n until we reach

the same size as the training set N . Then we run this duplicated subset of the training

set through the measure and the Inception Score. We take samples of CIFAR-10 training

images. To get our final score we repeat this experiment 5 times and take the average of the

scores. We show in Fig 3.7 that the Inception Score approaches its optimum at 1,000 images

while DDM does not achieve its optimum as we penalize the model lack of generalization to

the test set.

3.4.6 ImageNet Results

To ensure that the results work for arbitrary sized images we tested DDM on 46,000 images

from the ImageNet dataset. We randomly set aside 45,000 images from the validation set

that we partition into 40,000 training and 5,000 testing images. We took the remaining one

thousand images to serve as our samples. We ran a series of corruptions to the 1,000 image

samples, those of additive Gaussian noise, uniform random noise and Gaussian blur. For

37

CIFAR-10 Samples from Measure Score

DCGAN −163.14
Improved Wasserstein GAN −227.66
Improved GAN −232.74
Training Set −289.23

Table 3.1: GAN Scores for various architectures on the CIFAR-10 dataset.

Gaussian blur with a fixed mean of zero, each additive point to the variance, sigma, roughly

corresponds to a loss of 10 bits of information according to DDM. The results for additive

noise tended to be on the order of 12 bits.

3.4.7 GAN Generator Comparisons

We wanted to demonstrate that DDM could be used to measure the quality of various GANs,

so we chose 3 popular GAN architectures namely DCGAN, Improved GAN, and Improved

Wasserstein GAN. We trained each GAN architecture until convergence as deemed their

respective implementation on the CIFAR-10 dataset. Then we sample 5000 images uniformly

at random from each generator to use as our generated set. See Table 3.1 for the list of results.

Here we demonstrate that the Improved GAN best approximates the true distribution,

while Improved Wasserstein GAN performs slightly worse. The worst performing model is

the DCGAN, as expected.

38

CHAPTER 4

CONCLUSIONS

4.1 Conclusion and Future Work

In this work we created both a novel GAN architecture, and approach that we demonstrate

can be utilized for both interpretability and augmentation. However this method does not

solve the issue of instability in GAN training. This approach still fails to produce inter-

pretable results on image datasets that GANs still fail on such as Imagenet or COCO.

With regards to our measure, we believe it to be quite robust as to the settings we have

tested against. It is also a relatively fast measure to compute. The current main downside

of the method is the space complexity grows as the square of the dataset. We are currently

exploring ways to mitigate this impact perhaps through clustering of the representations

before computing the pairwise distances. However assuming the dataset size is not very

large our approach outperforms all other methods.

For future work we plan to examine curriculum learning or training schedules. This can

be approached in two ways: first start with easy examples then make it harder. The other

approach can be to progressively make the discriminator stronger over time and allow the

generator to consistently “win”. Neither of these have been studied partially because coming

up with a good curriculum is rather difficult. The idea of a discriminator curriculum has

never been proposed.

39

REFERENCES

Puurula Antti. Scalable Text Classification with Sparse Generative Modeling, pages 458–469.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-32695-0.

Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized

generative adversarial networks. In International Conference on Learning Representations

(ICLR), volume abs/1612.02136, 2016. URL http://arxiv.org/abs/1612.02136.

M. Germain, K. Gregor, I. Murray, and H. Larochelle. MADE: Masked Autoencoder for

Distribution Estimation. ArXiv e-prints, February 2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Yee Whye Teh and Mike Titterington, edi-

tors, Proceedings of the Thirteenth International Conference on Artificial Intelli-

gence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages

249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL

http://proceedings.mlr.press/v9/glorot10a.html.

M. Goessling and Y. Amit. Mixtures of Sparse Autoregressive Networks. ArXiv e-prints,

November 2015.

Marc Goessling. High-Dimensional Generative Models: Shrink-

age, Composition and Autoregression. PhD thesis, 2016. URL

https://knowledge.uchicago.edu/handle/11417/242?show=full.

Jacob Goldberger, Shiri Gordon, and Hayit Greenspan. Approximating the kullback leibler

divergence between gaussian mixture models. In International Conference on Computer

Vision (ICCV), 2003.

40

I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet. Multi-digit Number Recogni-

tion from Street View Imagery using Deep Convolutional Neural Networks. ArXiv e-prints,

December 2013.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks.

pages 1–9, 2014a. ISSN 10495258. doi: 10.1001/jamainternmed.2016.8245. URL

http://arxiv.org/abs/1406.2661.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In Interna-

tional Conference on Learning Representations (ICLR), 2014b.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved Training

of Wasserstein GANs. ArXiv e-prints, March 2017.

B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for Object Segmentation

and Fine-grained Localization. ArXiv e-prints, November 2014.

G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network. ArXiv

e-prints, March 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation

with conditional adversarial networks. In CVPR, 2017.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. ArXiv e-prints,

December 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. CoRR,

abs/1312.6114, 2013. URL https://arxiv.org/abs/1312.6114.

41

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Tech

Report, 2009.

Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic ob-

ject recognition with invariance to pose and lighting. In Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

CVPR’04, pages 97–104, Washington, DC, USA, 2004. IEEE Computer Society. URL

http://dl.acm.org/citation.cfm?id=1896300.1896315.

M.-Y. Liu and O. Tuzel. Coupled Generative Adversarial Networks. ArXiv e-prints, June

2016.

David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. In International

Conference on Learning Representations (ICLR), 2017.

M. Mirza and S. Osindero. Conditional Generative Adversarial Nets. ArXiv e-prints, Novem-

ber 2014.

Volodymyr Mnih and Geoffrey E. Hinton. Learning to detect roads in high-resolution aerial

images. In Proceedings of the 11th European Conference on Computer Vision: Part VI,

ECCV’10, pages 210–223, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-15566-9,

978-3-642-15566-6. URL http://dl.acm.org/citation.cfm?id=1888212.1888230.

S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training Generative Neural Samplers using

Variational Divergence Minimization. ArXiv e-prints, June 2016.

A. Odena, C. Olah, and J. Shlens. Conditional Image Synthesis With Auxiliary Classifier

GANs. ArXiv e-prints, October 2016.

42

Vilfredo Pareto. The new theories of economics. History of Economic Thought Articles, 5,

1897. URL https://EconPapers.repec.org/RePEc:hay:hetart:pareto1897.

Emanuel Parzen. On estimation of a probability density function and mode. Ann.

Math. Statist., 33(3):1065–1076, 09 1962. doi: 10.1214/aoms/1177704472. URL

https://doi.org/10.1214/aoms/1177704472.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning

with deep convolutional generative adversarial networks. In International Conference on

Learning Representations (ICLR), 2016.

A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta, and Y. Bengio. FitNets:

Hints for Thin Deep Nets. ArXiv e-prints, December 2014.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and

Fei-Fei Li. Imagenet large scale visual recognition challenge. CoRR, abs/1409.0575, 2014.

URL http://arxiv.org/abs/1409.0575.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. Imagenet large scale visual recognition challenge. International Journal of

Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and

Xi Chen. Improved techniques for training gans. In Neural Information Processing Systems

(NIPS), 2016.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixelcnn++: Improving

the pixelcnn with discretized logistic mixture likelihood and other modifications. CoRR,

abs/1701.05517, 2017. URL http://arxiv.org/abs/1701.05517.

43

Lucas Theis, Aaron van den Oord, and Matthis Bethge. A note on the evaluation of gener-

ative models. In International Conference on Learning Representations (ICLR), 2015.

B. Uria, M.-A. Côté, K. Gregor, I. Murray, and H. Larochelle. Neural Autoregressive Dis-

tribution Estimation. ArXiv e-prints, May 2016.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu.

Wavenet: A generative model for raw audio. CoRR, abs/1609.03499, 2016. URL

http://arxiv.org/abs/1609.03499.

Yanshan Wang, In-Chan Choi, and Jae-Sung Lee. Indexing by latent dirichlet allocation.

CoRR, abs/1309.3421, 2013. URL http://arxiv.org/abs/1309.3421.

Y. Wu, Y. Burda, R. Salakhutdinov, and R. Grosse. On the Quantitative Analysis of

Decoder-Based Generative Models. ArXiv e-prints, November 2016.

S. Zagoruyko and N. Komodakis. Wide Residual Networks. ArXiv e-prints, May 2016.

44

